CORRELATION FUNCTION APPROACH TO SHORT-RANGE ORDER

nicht die S-Matrix als Funktion der Energie, son-
dern nur bei fester, durch das Experiment vorgege-
bener Energie zu berechnen. Lediglich bei Streu-
problemen mit groBem Coulomb-Parameter # wird
die Auswertung durch die zu diagonalisierenden um-
fangreichen Matrizen erschwert.

Die detaillierte Durchfiihrung der vorgelegten
Theorie am Beispiel der Coulomb-Anregung der
Rotationsniveaus deformierter Kerne ist in Vor-
bereitung.
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By pushing forward the decoupling from the three- to the four-point correlation function short-
range order is systematically introduced into the description of the statistical behaviour of the
Ising-model. Application of a procedure which is a natural generalization of that invented by
Bogoljubov and Tjablikov for the Heisenberg-model, leads to an overall-approximation for the
magnetization and the nearest-neighbour correlation which may be compared with the Ising-model
variant of Oguchi’s two-spin-cluster molecular field theory. The results of both approximations are
very similar both for low and high temperatures, but for the transition point the new approach
yields values which lie considerably lower and therefore are more reliable than those following
from Oguchi’s theory. Moreover, the comparison with a slight modification of the theory which
is also presented in this paper, illuminates the physical mechanism which is responsible for the
formation of correlations within the order of approximation, considered.

1. Introduction

Beyond any doubt the technique of quantum-
statistical Green’s functions and correlation func-
tions is one of the most powerful tools in the mo-
dern theory of interacting N-particle systems in
general and in the theory of magnetism in particu-
lar.

Applied to the Heisenberg ferromagnet already
its simplest version which consists of a decoupling
approximation in the three-point function as given
by BocorjuBov and TjaBLIKOV ! 2, leads to a de-
scription of the temperature dependence of the mag-
netization, in which the correct low temperature be-
haviour of this quantity is incorporated as well as
a phase transition. After some slight modifications
in the decoupling procedure this approximation

Sonderdruckanforderungen an Dr. R. J. JELITTO, Institut
fiir Theoretische Physik und Sternwarte der Universitadt
Kiel, D-2300 Kiel, OlshausenstraBe, Haus C 4/1.

1 N. N. Bocorjusov and S. V. TjaBLikov, Sov. Phys. —
Dokl. Acad. Nauk USSR 4, 604 [1959].

yields the best overall-description of the Heisen-
berg-model existing up to this day.

On the other hand it clearly suffers from the
fact of being essentially a single particle theory, in
which statistical correlations of the z-components of
spins at different lattice sites are neglected in the
same way as they are in the Weiss molecular field
approximation. Clearly, this is due to the fact that
the decoupling is performed in the three-point func-
tion. But unfortunately great mathematical difficul-
ties arise, if one tries to push this decoupling for-
ward to a higher order of these functions and thus
to take into account correlation effects in spin-
clusters as this was done by OcucHi® or P. R.
WEIss ¢ within the frame of molecular field theories.

For the Ising-model the chain of Green’s func-
tions may be explicitly summed up because of the

2 S. V. TjaBrikov, Ukrain. Mat. Zhur. 11, 287 [1959].
3 T. OcucHI, Progr. Theor. Phys. (Kyoto) 13, 148 [1955].
4 P. R. WErss, Phys. Rev. 74, 1493 [1948].
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simple commutation properties of its Hamiltonian > ¢,
yielding a set of exactly valid equations for thermo-
dynamic averages which unfortunately does not com-
pletely determine the problem. On the other hand
the introduction of the decoupling of Bogoljubov
and Tjablikov (BT) into the three-point function
at once leads to the Weiss molecular™field approxi-
mation (WMF) which by this way proves to be the
Ising counterpart of the BT-approximation for the
Heisenberg-model. But contrary to this model the
Ising-model is simple enough to permit an explicit
consideration of correlating effects by the method
of correlation functions.

For this purpose certain parts of the three-point
functions must be considered in the equations of
motion exactly by shifting the decoupling from those
to the four-point functions. In this way the molecu-
lar field results of Oguchi or their Ising counterpart
may be reproduced, when the three-point function
of a given cluster consisting of two spins is taken
into account explicitly 7 8.

In this paper we present the results of an alter-
native decoupling of the four-point functions which
in some respect is the natural generalization of the
BT procedure, and leads to a description of the
phase-transition and the short-range order in the
Ising-model which seems not to be discussed in the
literature on this subject. This approximation is not
claimed for being an especially good one in com-
parison with the results of the sophisticated methods
available for the Ising-model today — see e. g. % —,
but it seems to provide a better description of the
model just in the critical region than the simple
two-spin-cluster theory does, though the order of
approximation is exactly the same for both ap-
proaches.

Moreover, the consideration of a slight modifica-
tion of the theory presented in this paper illumina-
tes the physical mechanism which brings about cor-
relations within this order of approximation.

2. Approximative Integration of the Equations
of Motion

The Ising-model with nearest-neighbour inter-
actions which we are concerned with in this paper,

5 B. G. S. DomaN and D. Ter HaAR, Physics Letters 2, 15
[1962].

6 H. B. CALLEN, Physics Letters 4, 161 [1963].

7 R. J. JeLiTTO, Zur Beschreibung von Nahordnungseffekten
im Ising-Modell mittels der Methode quantenmechanischer
Korrelationsfunktionen, Kiel 1969, unpublished.
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is determined by the Hamiltonian

H=—-J>s;8%.4, (1a)
n,4
where A represents the z nearest-neighbour vectors
of the coordination lattice considered and (83)2= 1
holds; the additional influence of a homogeneous
external magnetic field directed along the z-axis is
given by
H.-H > s} (1b)
n
with H connected with the gyromagnetic factor g,
Bohr’s magneton up and the magnetic field H, by

H=gugH,. (le)
The method, we shall apply to this model, is simple
and closely akin to a procedure which SAUTER !¢
has extracted from the more complicated formalism
of Green’s functions for the application to the Hei-
senberg-model:
Let us define the correlation functions (S,ﬁ, Spi1)
and (S, 8%+ 4,8,+1), where the meaning of (A, B)
is

(A,B)=(A() B(0)) (2)
and S;; are the spin-deviation operators, defined by
S; =s% tisY. (3)

By virtue of the translation invariance of the Hamil-
tonian (1) these functions will not depend on the
lattice site M, so that we may write

fi(®) = (S, Stust)
b, 4(2) = (S Stu+a,Sm+1) - (4)
We now investigate the equation of motion for the
two-point function f;(¢) which is given by

i’;['fz(t) =([s;, H+H,],8,.1) (5)
=—Hf(t) +2] ;hu(t)-

The wellknown procedure of BT consists in decou-
pling h;, 4(t) according to
i, 4(2) = (8%) fi(¢) =s fi(1) , (6)
whereby (5) becomes an equation purely in f;(2).
From its integration one easily gets Weiss’ molecu-
lar field approximation by use of the thermodyna-
mic boundary conditions — see Eq. (14) later on —
for the correlation functions.
8 For the re-derivation of Oguchi’s results for the Heisenberg-
model one of course has to consider an exchange-coupled
two-spin-cluster imbedded in an Ising lattice.

9 C. Doms, Adv. Physics 9, 149 [1960].
10 F. SAUTER, Ann. Phys. 11, 190 [1963].
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In this paper we do not perform any decoupling
in h; 4(t), but go on to formulate the equation of
motion for this function, too. By

(l{;; +H’>hz,d(t) =2]§ (S;; 8 L A8% A, Smtl)
(7)

this three-point function is connected with four-
point functions.

Now it is crucial to note that in one summand
on the right hand of Eq. (7) A = Aholds, whereby
the corresponding four-point function is reduced to
1 f, because of (8?)2=1%. In fact, as will be shown
in Chapter 4, this is the only mechanism that gives
rise to two-spin-correlations within the order of ap-
proximation we are going to introduce now:

If A and A differ, we get four-point functions,
the graph of which is given in Fig. 1. Neglecting
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Fig. 1. Graph of the four-point correlation functions.

the correlation of any three spins systematically, we
next perform the symmetric decoupling

(8o St a ShtasSmil)
~s{(8) 8hta ,Smr1) +(Su Shva,8m11))}
=3 s{hy4(2) +hy, 4(2) }. (8)

This procedure should be especially reliable for lat-
tice types, where the sites m + A and m + A may
not be nearest neighbours, as is the case for all
plane and cubic coordination lattices apart from
the triangle and the {. c. c. lattice.

Now introduce (8) into Eq. (7) and define

9u(1) = ;hz,A(t)- (9)

Gathering up the result of this procedure and Eq.
(5) we, for one thing, get a system of coupled first
order differential equations for the motion of f;
and g¢;

AR\ _ (- 27 f1
l(?ﬂ)*(ézl —H'+2J(z—l)s)(gz) (10a)
and, for another thing, an equation for h; 4

b g+ H —J(z=2)s) by 4= —;—fl+1sgl (10 b)
which depends on this system.
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These equations are easily solved. Defining
e,2,3=J11,23—H',

Me=s(z—1) T Vs?(z—1)2+z, n3=s(z—2),
Ej=eiat (11)

for convenience, we get the solutions

(fl(l) ) el 77(_’72 E\+m E, 2(E,—E,) )(/1(0) )
gi(t) 71—\ 3z(E\—E,) 7y Ey—n5 E») \g1(0)

(12 a)
and

b, () = - 9u(t) — |1 9u(0) —hu4(0) | Ey. (12D)

With them we have got all information concerning
the dynamical features of the model required and
may proceed to the investigation of the statistical
ones in the next chapter.

3. The Statistical Consequences
of the Approximation

The point of contact between dynamics and sta-
tistics is given by the famous relation

(A1) B(0))=(B(0) A(t+if))  (13)

holding for the macro-canonical ensemble, from
which we get

([A,B])=(A(0) B(0)) — (A(—ip) B(0)) (14)

by setting £= —i . This equation will be the start-
ing point for our further considerations.
If we define
Fl: ([S;{,S,;H]) )
Gi=([su ; CHE D

Hy 4= ([85 87+a ,8m+1])

and choose I =0, we can reduce these and the func-

tions f,(0), go(0) and kg 4(0) by virtue of the

peculiarities of the spin-1/2-algebra with the result

Fo =25, fo(0) =% +s,

Hy 4=2q(B) = (8787+4),ho,4(0) = is+q(A),

Co=23q(B), g(0) = 5s+ 3q(A).
(16)

In consequence of the point-symmetry of the lattice

types considered, we may suggest that ¢(A) will not
depend on A in fact!!. Hence we may confine our

(15)

11 Tt is possible to prove this conjecture by a systematic dis-
cussion of the complete system of solutions (12 a) and
(12 b).
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further attention to the behaviour of the function g,
which is simpler than that one of hg .

Setting

~

Ej=efn (17)

in analogy to the definition of E; and combining
(14), (16) and (12 a) we get after some re-arrange-
ment

{ni—na—n2Ex+ 0 Es+2(Ey—Ey) } s R
+2z(E;—E,) q = 3 {m '—A7]2+’72AE1“’71 Es}
%{*’71+772+§1“E2 7 E1'"7/2E2} s A(18)
+{n—ne+m Es—n2Es} ¢ = — 1 (E;—Ey).
By these equations the magnetization s and the
(z, z) -correlation ¢ are fully determined.

To improve the transparency of the evaluation
of s and ¢ from these equations, it is useful to intro-
duce some abbreviations:

Ne= utv, B

u=s(z—=1), v=Vs?(z—1)%2+2z =V +z,
A= PE=T0) _ fH—Is(E=1)

S= sinh(fJ»), C=cosh(fJ]v).

(19)

Using them, after a somewhat tedious elimination
we get the relations

vA2(s+ ) +As(2vC— (z+1) 5)

+7(s— 3) =0, (20a)
9= 7o 20+ (u—2) AS +7AC] s
—[v—uAS—vACl}, (20b)

the first of which is an implicit non-linear equation
for the determination of s(7), whereas the second
one allows the calculation of ¢, when s is known.
Eq. (20 a) may be brought into a form, in which
it is very similiar to that of the two-spin-cluster
theory which is derived in Appendix 1.
For both theories we find
_ sith(BHe)
2 cosh (f Hett) +1" °
but whereas the Oguchi type molecular field ap-
proach yields

Heys=H —2Js(z—1), I'=2¢e#7,

we now get

S=

(21)

(22 a)

Heff:H’_]s(z_l)7
r-2c- s
——— +1
=2cosh (BJVs?(z—1)2+z) — Vsiizz;'ljé:z

“sinh (BJVs2(z—1)2+z). (22b)
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For ¢ a comparably simple expression does not
seem to exist, but clearly this quantity is uniquely

determined by (20Db).

4. A Modification of the Approach
of the Last Chapters

Before discussing the quantitative contents and
physical consequences of the formulae (20), (21) and
(22), we now go to present a slight modification
of the derivation given so far, which is interesting
by the fact that it sheds a striking light on the me-
chanism bringing about correlations-effects within
the order of approximation considered.

For this purpose let us go back to Eq. (7), but
forget the fact that in one of the z summands on the
right hand of this equation A and A are identical.
Performing the decoupling (8) now and introduc-
ing ¢g;(t) as given by (9), instead of (10a) we get
the equations

AR\ _(-B 21 :

l(gz):< 0 —H+2]sz )(;z)
which describe the dynamical aspects of the system
in this case.

Integration of these differential equations and ap-
plication of exactly the same procedure as was per-
formed on the way from (10) to Egs. (18), yields
the relations

(5= 3 = —E/(s+ 1 — (B ~E) (} +4/s),

(23)

(g—3s)=—E/(g+ }s) (24)
where E,” and E,” are defined by
Ef—eft, [Ey—eft—21s5  (25)

for the sake of simplicity.

Evaluating these equations one finds from the
second line of (24)

g _1 (1_—52:)

s 2 \14Ey
and introducing this and (25) into the first equa-
tion one finally gets

s=3%tanh[3B8(-H +2J/s2)], q=52 (27)

This is exactly the result of Weiss’ (one-spin-cluster)
molecular field theory, in which correlations between
different particles are neglected from the beginning.
It looks pretty surprising to recover these relations,
especially g =s% as the result of a procedure which

(26)
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was supposed to yield a better description of the
model, because the decoupling is performed in a
way which takes correlating effects into account. But
it clearly shows that within this order of approxima-
tion, i.e. if three-spin-correlations and secondary
effects brought about by them are systematically
neglected, the only mechanism for the realization of
short-range order in the Ising-model is given by the
identity
(8o SinraShia,Smr)

=1 (85, Sa+1) (28)
which was taken into account in Chapters 2 and 3,

but neglected in the derivations of the present chap-
ter.

for A=A

5. Evaluation and Discussion
of the Thermodynamic Results

Now we return to the theory developed in Chap-
ter 3. We evaluate and discuss the solutions result-
ing from Egs. (20) — (22), and compare the results
with those following from the two-spin-cluster mole-
cular field approach.

For H vanishing Eq. (21) has the trivial solution
s =0 and, moreover, if s(7T') is one solution, —s(T)
is another one. These are rather elementary requisi-
tions which must be claimed to hold for every rea-
sonable theory on this subject 2.

The correlation in the unmagnetized phase which
gives rise to short-range order above the transition
point, follows from (21 b) to be

q= 41/5 tanh (,3121/2), (29 a)
an expression which is in concurrence with
g= }tanh (’92—’) (29b)

for the two-spin-cluster theory and with ¢=0 ac-
cording to Weiss.

For T— ~ and all values of H the magnetiza-
tion and short-range order vanish in correspondence
with the exact results.

In the limit of f— o i.e. T— 0 there exists a
non-trivial solution s = —1/2 and g = 1/4 which per-
sists for H =0 and gives rise to the phase transition

12 There is another asymptotic relation which must be ful-
filled by every reasonable approximation: For z=o0 the
WMF becomes the exact description of the model 13 and
therefore the results of all approximations must tend to
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discussed below. For very low temperatures this so-
lution behaves like

s=— 3+ (g%)ue"“z (30 a)
in contrast with the two-spin-cluster and the Weiss
molecular field theories, both yielding asymptoti-
cally the exact result

s=—3% +ehlz, (30b)

This non-trivial solution breaks down at the Curie-
temperature 7c which in the usual manner may be
derived by expanding Eq. (20 a) into a power series
in s. Setting
pl(z—1) =K, (31 a)
cosh(BJVz) =Cy, sinh(BIVz)=S,,

we get from (21) and (22 a) the first terms of this
expansion

[Kz(l _ §)+I(Z_D—2(2 So VzBJl—(z+1) CoBJ

| 2z
+ i;;;so)] $2+0(st) = — [2—K+2C0— B,

(31b)

In the limit of s— O the expression on the right
hand must vanish. Hence the relation

2—(z—1) o] +2cosh(Bc] Vz)

— i sinh (oI Va) 0 (32
follows which determines the transition point
Tc=1/kfc.

The counterparts to this equation in the two-spin-
cluster and Weiss molecular field theories are given
by the simpler relations

1—(z—1) feJ+eFfcl=0 (33 a)
respectively

Bcl=2/z.

In the neighbourhood of 7T the magnetization van-
ishes like

(33 b)

s=aVTo—T, (44)

as it does also in the other theories mentioned.
The transition points numerically evaluated from
Eq. (32) for different lattice types are given in

it in the limit of z— oo . The proof for the approach of
this paper is given in Appendix 2.

13 F. BITTER, Introduction to Ferromagnetism, McGraw-Hill,
New York 1937, p. 153.
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1 ch - b f Table 1. The transition points for several Ising lattices
=Gl quacr, imangle  8:G Gl GG in different approximations. I: overall-approximations,
z 2 4 6 6 8 12 II: special Ising-model methods. 1. ch.: linear chain;
quadr.: quadratic plane; triangle: hexagonal plane;
WMF 1 2 3 3 4 6 s.c.: simple cubic; b.c.c.: body center cubic and
I 2-sp.-cl. 0.782 1.888 2923 2923 3.941 5.960 f. c. c.: face centered cubic lattice. WMF : Weiss mole-
Eq. (32) 0.619 1.645 2.653 2.653 3.656 5.660 cular field theory; 2-sp.-cl.: two-spin-cluster approach;
BP-MF 0 1442 2466 2466 3.476 5.484 Eq. (32): theory of this paper; BP-MF : BETHE-PEIERLS
ceries 0 1134 1.824 29256 3176 4.896 molecular field theory 14 1.5; series: high temperature
1I exack 0 1.134 1.821 2 ? ? expansions for the susceptibility ?; exact: according to

ONSAGER 18 and YANG 17,

Table 1 in comparison with the results of several
other calculation methods.

As is seen from this table the transition points
derived from (32) compared with those evaluated
from the two-spin-cluster theory tend considerably
towards lower temperatures, i.e. into the right direc-
tion, but they are always higher than the results
which BETHE !* and PEIERLS 15 have derived from
a (z+ 1) -spin-cluster molecular field theory. In con-
trast to this approach our derivation incorrectly
yields a phase transition for the linear chain, and,
in agreement with it, it does not take into account
the topological structure of the lattice: for the tri-
angle and the simple cubic lattice — both with
z=6 — we get the same Curie-point. As already
suspected the largest discrepancies in comparison
with the results of exact calculations and series ex-
pansions are found for the hexagonal plane and the
face centered cubic lattices, where additional cor-
relation effects, coming from the fact that in these
lattice types the nearest-neighbours of one site may
be adjoining one another, are neglected in our ap-

proach.

In Fig. 2 we compare the results of our approxi-
mation with those of the WMF, as evaluated for the
s.c. lattice. The most important difference in com-
parison with this approach lies in the existence of
short-range order for 7 >T, but the nearest-neigh-
bour-correlation g shows a break at the transition
point instead of a singularity in scope, as it exactly

should be 18,

For low temperatures (7 < T¢/2) s® is a good
approximaton for the correlation q.

In Fig. 3 the same results are plotted in com-
parison with the curves evaluated from the two-spin-
cluster molecular field theory. Apart from the im-
provement in the transition point, mentioned above,

14 H. A. BETHE, Proc. Roy. Soc. London A 150, 552 [1935].
15 R. E. Pe1erLs, Proc. Cambridge Phil. Soc. 32, 471 [1936].
18 1. ONSAGER, Phys. Rev. 65,117 [1944].

13 KT—= &
()

]
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-25
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Fig. 2. Comparison of the results of the present approach with
WMF for the s.c. lattice. : s and g from Egs. (20),
: s and ¢ after WMF, s? after Eq. (20),

~~~~~~~ : correlation in the unmagnetic phase [Eq. (29a)].
a: Curie point according to (32), b: Curie point according
to WMF.

Fig. 3. Comparison of the results of the present approach with
the two-spin-cluster molecular field theory for the s.c. lattice.
————: s and ¢ from Egs. (20), —— — —: s and ¢ from
Egs. (A5), ——-— : g in the unmagnetic phase after (29 a),

a: Curie point according to (32), b: Curie point of the two-
spin-cluster theory.

the most obvious difference of the two approaches
is in the asymptotic behaviour of the correlation in
the unmagnetic phase for low temperatures: ¢ tends

17 C. N. YANG, Phys. Rev. 85, 809 [1952].
18 This break appears in all overall-approximations.
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towards 1/4 Vz in our theory in contrast to the mo-
lecular field approach which yields ¢— 1/4. But
this behaviour is without further physical relevance,
because this phase is unstable for thermodynamic
reasons.

Apart from these differences both theories yield
very similiar results, especially as to the low tem-
perature behaviour of s and ¢ and to the short-range
order above the transition point.

For the last point we shall account for the para-
magnetic susceptibility in this region. By implicit
differentiation of Eq. (21) we get the formula

_ ds|
“ T dH s H=0 2 (34 a)
2~ﬂ](z—1)+2cosh(ﬂ]]/z)-— z:/—}l sinh(ﬂz]/é)

In it for T =T the denominator vanishes due to
(32), so that y in the correct way becomes singu-
lar at the transition point. For high temperatures
(34 a) tends asymptotically to

Xas = 2/??7];
which is exactly the Curie-Weiss-law resulting from
WMF. For temperatures above, but near to T,
deviations from this simple law appear in (34 a)
which are a direct consequence of the onset of short-
range order in this temperature interval.

(34b)

6. Conclusions

As we have seen from the preceding discussion
the natural reference point for a comparison of the
theory presented in this paper is given by the Ogu-
chi type two-spin-cluster molecular field approxima-
tion for the Ising-model. There is a good agreement
of the results of both approaches for low and high
temperatures, but in the critical region our theory
seems to present a real improvement because of the
more accurate values for the transition point, it
yields.

On the other hand not only by inspection of the
results, but also from theoretical considerations our
theory and that of Oguchi are closely related. This
is due to the fact that in both approaches two-par-
ticle-correlations are the only ones involved, and all
higher correlations are systematically neglected. In
contrast to this e. g. in the Bethe-Peierls theory such
higher correlations are taken into account.

19 J, S. SmART, Effective Field Theories of Magnetism, W. B.
Saunders Company, Philadelphia 1966.
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The difference of the two approaches compared,
and with it the key for an understanding of the
different quality of their results, lies in the fact,
that in Oguchi’s theory only the correlation within
one fixed two-spin-cluster is considered, whereas in
our approximation all pairs of nearest-neighbours
contribute to the correlation in a highly symmetrical
way. The decoupling needed for a separation of the
two- from the more-particle-correlations in this case
is provided by a very plausible generalization of the
successful procedure invented by Tjablikov.

A very important question is that one concerning
the possibility of a generalization of the method
adopted in this paper to the Heisenberg-model. On
one hand, as we have already emphasized, Tjabli-
kov’s collective approach is essentially a single par-
ticle theory which by this fact cannot give adequate
consideration to correlation effects. On the othe:
hand the OcucHI 2 and P. R. WEIss ¢ molecular field
approximations for the Heisenberg-model take into
account cluster-correlations, but are local theories
from the beginning which pretend an energy gap in
the spectrum of the elementary excitations and there-
fore yield wrong results for the mathematical type
of the temperature dependence of the magnetization
at very low temperatures. Clearly it would be highly
desirable to incorporate both correlations and the
collective behaviour of the model in one approxima-
tion which should be expected to give the best over-
all-description of the Heisenberg-model available so
far.

Indeed, as preliminary calculations have shown,
it is possible by the method of correlation functions
to bring together both features of the model in one
system of differential equations, at least in a certain
generalization of Oguchi’s two-spin-cluster theory.
But unfortunately in the evaluation of this system
great mathematical difficulties arise which are nei-
ther completely understood in their origin nor over-
come at present.
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Appendix
1. Concise Derivation of the Two-Spin-Cluster

Molecular Field Theory for the Ising-Model

The derivation given in this appendix is completely
based on the concepts of the molecular field approxi-
mation, as presented e. g. by SMART 19,
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Let us investigate the statistical behaviour of an
Ising-coupled cluster, consisting of two spins 0 and I
under the influence of an effective magnetic field Hest
which is given by

Heti=H —2J](z—1)s. (A1)
The Hamiltonian of this cluster is
H= —2] sy s+ Heit (sy? +8,%) (A2)

and the statistical quantities in question are defined by
the following relations

s={(sp)=(8") = — : ? (log Trace e~ #H)

2 3(f Het)
(A 3a)
)
- & —pH
q={s7s*) 521 (log Trace e #H), (A 3b)
The trace
Trace e #H — Z e FE: (A4)

is easily evaluated, because H has only the 4 eigen-
values

E1= —]/2—Heff, E2_3:J/2 ) E4: —]/2+Heff-

Introducing them into (A 4) and performing the differ-
entiations (A 3), one immediately gets the final ex-
pressions

1 sinh(f Hetr)

5= 7 "2 cosh(B Hett) +e—F1°

1 cosh (f Hegr) —e—#/

4 cosh (F Hetr) +e—hI

(A 5a)

(A 5b)

which together with the definition of Heit (A1) form
a complete non-linear system for the evaluation of the
magnetization s and the correlation gq.

CORRELATION FUNCTION APPROACH TO SHORT-RANGE ORDER

2. The Asymptotic Behaviour of the Theory
in the Limit z— o©

As BITTER 13 has noted, the WMF becomes the exact
theory of the Hamiltonian (1) in the limit of z— o©.
This statement yields and additional boundary condition
which must be met by every reasonable approximation
for the Ising-model and which now is proved to be ful-
filled by the approach of this paper at least in the limit
of vanishing magnetic field.

If we go back to Eqs. (19) and (22) we find the
asymptotical expressions

v ~sz, Het~—Jzs (A6)
which, introduced into (21) and (22b) yield the result
o sinll(/g J ﬁ) [
" 2cosh(fJzs)+[2cosh(fTzs)— (1/s-sinh(fTzs)] "

(A 7a)

S

This relation may be easily transformed into
4 cosh(ffJzs)-s—sinh(fJzs) =sinh(fJzs) (ATb)
which is exactly the WMF equation
s=%tanh(fJzs).
For the correlation ¢ we find from Eq. (20b)

(A Tc)

g _ 1 4
R v {254+25sAC+2sAS—1+AC—-AS}
1 2 (A 8a)
4-As{4s 1+ 42},

and introducing (A 7c) into this equation we get
»‘i;;-tanh(ﬂjzs):s, (A 8b)

the result of Weiss’ one-spin-cluster approach.

Therefore for H=0 our approximation meets the
boundary condition in the same way, as Oguchi’s,
Bethe-Peierls-Weiss” or Bogoljubov-Tjablikov’s theories
do.



