
nicht die S-Matrix als Funktion der Energie, son-
dern nur bei fester, durch das Experiment vorgege-
bener Energie zu berechnen. Lediglich bei Streu-
problemen mit großem Coulomb-Parameter r] wird 
die Auswertung durch die zu diagonalisierenden um-
fangreichen Matrizen erschwert. 

Die detaillierte Durchführung der vorgelegten 
Theorie am Beispiel der Coulomb-Anregung der 
Rotationsniveaus deformierter Kerne ist in Vor-
bereitung. 

Meinem verehrten Lehrer, Herrn Professor Dr. O. 
S C H E R Z E R , danke ich für sein Interesse, das er diesem 
Problem entgegenbrachte und für wertvolle Anregun-
gen und Ratschläge bei der Fertigstellung dieser Ar-
beit. Die Problemstellung der Arbeit ergab sich aus 
Diskussionen mit meinem Bruder, Professor Dr. W. 
G R E I N E R , wofür ich ihm danken möchte. Dank gebührt 
audi den Herren Dr. C . TOEPFFER, Dr. W. SCHEID und 
K. SCHÄFER für Diskussionen und Hinweise. 

Correlation Function Approach to Short-Range Order in the Ising-Model 
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(Z. Naturforsch. 25 a, 181—188 [1970] ; received 2 December 1969) 

B y push ing f o r w a r d the d e c o u p l i n g f r o m the three- to the f our -po in t corre la t i on f u n c t i o n short-
range order is sys temat i ca l ly i n t r o d u c e d into the d e s c r i p t i o n of the statistical b e h a v i o u r o f the 
I s ing -mode l . A p p l i c a t i o n of a p r o c e d u r e which is a natura l genera l i zat ion of that invented b y 
B o g o l j u b o v and T j a b l i k o v for the H e i s e n b e r g - m o d e l , l e a d s to an overa l l - approx imat i on f o r the 
magnet izat ion and t h e neares t -ne ighbour corre la t i on w h i c h m a y b e c o m p a r e d with the I s i n g - m o d e l 
variant of Oguch i ' s two-sp in-c luster m o l e c u l a r f ield theory . T h e results of bo th a p p r o x i m a t i o n s are 
very s imilar both f o r l o w and h igh t e m p e r a t u r e s , b u t f o r the transit ion p o i n t the n e w approach 
y ie lds values which l ie c o n s i d e r a b l y l o w e r and t h e r e f o r e are m o r e re l iab le than those f o l l o w i n g 
f r o m Oguch i ' s theory . M o r e o v e r , the c o m p a r i s o n wi th a s l ight m o d i f i c a t i o n o f the theory which 
is a lso presented in this paper , i l luminates the p h y s i c a l m e c h a n i s m which is r e spons ib l e f o r the 
f o r m a t i o n o f c o r re la t i ons wi th in the o r d e r o f a p p r o x i m a t i o n , c o n s i d e r e d . 

1. Introduction 

Beyond any doubt the technique of quantum-
statistical Green's functions and correlation func-
tions is one of the most powerful tools in the mo-
dern theory of interacting Ar-particle systems in 
general and in the theory of magnetism in particu-
lar. 

Applied to the Heisenberg ferromagnet already 
its simplest version which consists of a decoupling 
approximation in the three-point function as given 
by B O G O L J U B O V and T J A B L I K O V 2, leads to a de-
scription of the temperature dependence of the mag-
netization, in which the correct low temperature be-
haviour of this quantity is incorporated as well as 
a phase transition. After some slight modifications 
in the decoupling procedure this approximation 

S o n d e r d r u c k a n f o r d e r u n g e n an D r . R . J. JELITTO, Institut 
für Theoret i sche P h y s i k und Sternwarte der Univers i tät 
K ie l , D-2300 Kiel, O l shausens t raße , Haus C 4 / 1 . 

1 N. N. BOGOLJUBOV and S. V . TJABLIKOV, SOV. P h y s . — 
D o k l . A c a d . N a u k U S S R 4 , 6 0 4 [ 1 9 5 9 ] , 

yields the best overall-description of the Heisen-
berg-model existing up to this day. 

On the other hand it clearly suffers from the 
fact of being essentially a single particle theory, in 
which statistical correlations of the z-components of 
spins at different lattice sites are neglected in the 
same way as they are in the Weiss molecular field 
approximation. Clearly, this is due to the fact that 
the decoupling is performed in the three-point func-
tion. But unfortunately great mathematical difficul-
ties arise, if one tries to push this decoupling for-
ward to a higher order of these functions and thus 
to take into account correlation effects in spin-
clusters as this was done by O G U C H I 3 or P. R . 

W E I S S 4 within the frame of molecular field theories. 
For the Ising-model the chain of Green's func-

tions may be explicitly summed up because of the 

2 S. V . TJABLIKOV, U k r a i n . Mat . Z h u r . 11 , 287 [ 1 9 5 9 ] . 
3 T . OGUCHI, P r o g r . T h e o r . P h y s . ( K y o t o ) 1 3 , 1 4 8 [ 1 9 5 5 ] . 
4 P . R . WEISS, P h y s . R e v . 7 4 , 1 4 9 3 [ 1 9 4 8 ] , 
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simple commutation properties of its Hamiltonian 5 ' 6 , 
yielding a set of exactly valid equations for thermo-
dynamic averages which unfortunately does not com-
pletely determine the problem. On the other hand 
the introduction of the decoupling of Bogoljubov 
and Tjablikov (BT) into the three-point function 
at once leads to the Weiss molecularNi^ld approxi-
mation (WMF) which by this way proves to be the 
Ising counterpart of the BT-approximation for the 
Heisenberg-model. But contrary to this model the 
Ising-model is simple enough to permit an explicit 
consideration of correlating effects by the method 
of correlation functions. 

For this purpose certain parts of the three-point 
functions must be considered in the equations of 
motion exactly by shifting the decoupling from those 
to the four-point functions. In this way the molecu-
lar field results of Oguchi or their Ising counterpart 
may be reproduced, when the three-point function 
of a given cluster consisting of two spins is taken 
into account explicitly 7 ' 8 . 

In this paper we present the results of an alter-
native decoupling of the four-point functions which 
in some respect is the natural generalization of the 
BT procedure, and leads to a description of the 
phase-transition and the short-range order in the 
Ising-model which seems not to be discussed in the 
literature on this subject. This approximation is not 
claimed for being an especially good one in com-
parison with the results of the sophisticated methods 
available for the Ising-model today — see e. g. 9 —, 
but it seems to provide a better description of the 
model just in the critical region than the simple 
two-spin-cluster theory does, though the order of 
approximation is exactly the same for both ap-
proaches. 

Moreover, the consideration of a slight modifica-
tion of the theory presented in this paper illumina-
tes the physical mechanism which brings about cor-
relations within this order of approximation. 

2. Approximative Integration of the Equations 
of Motion 

The Ising-model with nearest-neighbour inter-
actions which we are concerned with in this paper, 

5 B. G . S. DOMAN and D . TER HAAR, Phys i cs Letters 2 , 15 
[ 1 9 6 2 ] . 

6 H . B . CALLEN, Phys i c s Letters 4 , 1 6 1 [ 1 9 6 3 ] . 
7 R . J. JELITTO, Z u r Beschre ibung von Nahordnungse f f ek ten 

im I s ing -Mode l l mittels der M e t h o d e quantenmechanischer 
Korre la t i ons funkt i onen , K i e l 1969 , unpub l i shed . 

is determined by the Hamiltonian 

H= -/2s* si + A, (la) 
n,A 

where A represents the z nearest-neighbour vectors 
of the coordination lattice considered and (S^)2 = | 
holds; the additional influence of a homogeneous 
external magnetic field directed along the z-axis is 
given by 

= / / ' 2 Sn ( l b ) 
n 

with H' connected with the gyromagnetic factor g, 
Bohr's magneton fi^ and the magnetic field Hz by 

H'=gjuBHz. ( l c ) 

The method, we shall apply to this model, is simple 
and closely akin to a procedure which S A U T E R 1 0 

has extracted from the more complicated formalism 
of Green's functions for the application to the Hei-
senberg-model: 

Let us define the correlation functions (Sm , S , ^ / ) 
and (S^Sffl + j , where the meaning of (A, B ) 

( A , B ) = (A(f) B ( 0 ) ) (2) 

and S^ are the spin-deviation operators, defined by 
S?77 = SB( + i Svm . (3) 

By virtue of the translation invariance of the Hamil-
tonian (1) these functions will not depend on the 
lattice site Iff, so that we may write 

fl(t) — (Sm > Sm + l ) i 
hi, = (Sm Sm + A , Sm+l) • (4) 

We now investigate the equation of motion for the 
two-point function ji(t) which is given by 

i jt flit) = ( [ S + , H + H , ] , S - + Z ) ( 5 ) 

= -H'fl(t)+2Jlhl<A(t). 
A 

The wellknown procedure of BT consists in decou-
pling j (t) according to 

hi,At) = (S*)fl(t)=sfl(t), (6) 

whereby (5) becomes an equation purely in fi(t). 
From its integration one easily gets Weiss' molecu-
lar field approximation by use of the thermodyna-
mic boundary conditions — see Eq. (14) later on — 
for the correlation functions. 

8 F o r the re -der ivat ion of Oguchi ' s results f or the Heisenberg -
m o d e l one of c o u r s e has to c o n s i d e r an exchange -coupled 
two-spin-c luster i m b e d d e d in an Is ing lattice. 

9 C. DOMB, A d v . P h y s i c s 9. 149 [ 1 9 6 0 ] . 
10 F . SAUTER, A n n . Phys . 1 1 , 1 9 0 [ 1 9 6 3 ] . 



In this paper we do not perform any decoupling 
in hJ>A(t), but go on to formulate the equation of 
motion for this function, too. By 

A , S m + l ) 

( 7 ) 

this three-point function is connected with four-
point functions. 

Now it is crucial to note that in one summand 
on the right hand of Eq. (7) A = A holds, whereby 
the corresponding four-point function is reduced to 
i fi because of (S2)2 = j . In fact, as will be shown 
in Chapter 4, this is the only mechanism that gives 
rise to two-spin-correlations within the order of ap-
proximation we are going to introduce now: 

If A and A differ, we get four-point functions, 
the graph of which is given in Fig. 1. Neglecting 

H 9 

Qm + l 

Fig. 1. Graph of the four-point correlation funct ions. 

the correlation of any three spins systematically, we 
next perform the symmetric decoupling 

(Sm 8^-1-/1 , Sm + l) 
~ I J { S^j-f/l , Sm + l ) + ( S/w S^-i-j , S)n + i ) } 
= \s{hUA{t) + hLA(t)}. (8) 

This procedure should be especially reliable for lat-
tice types, where the sites m + A and m + A may 
not be nearest neighbours, as is the case for all 
plane and cubic coordination lattices apart from 
the triangle and the f. c. c. lattice. 

Now introduce (8) into Eq. (7) and define 

9i{t)= 2 (9) 
A 

Gathering up the result of this procedure and Eq. 
(5) we, for one thing, get a system of coupled first 
order differential equations for the motion of fi 
and gt 

Hz] -H' 
2] 

+ 2 / ( z — 1 ) s * 91 / 
(10a ) 

\gu 'tzj ti -\-z J (z — 1} s / \ gi 

and, for another thing, an equation for hitA 

ihUA + (H'-](z-2) s) hl,A= J2 fl + Jsgl ( 1 0 b ) 
which depends on this system. 

These equations are easily solved. Defining 

£t,2,3 = /^1,2,3 — H , 
th,2 = s(z-l)±Vs2(z-~l)* + ~z, m = s(z-2), 

Ei = e~iet 1 ( 1 1 ) 

for convenience, we get the solutions 
fl(t)\_J^_l-rj,E1 + r]lE, 2(El-E.2) 
91 (01 Vi-V-A rj 

2(Et-Et) \ / fi(0) \ 
lEl-ri2E.2)\gm) 

(12 a) 
and 

hi,A{t) = \gi{t)~ j * <7/(0) — ht, A (0) I £3 . ( 1 2 b ) 

With them we have got all information concerning 
the dynamical features of the model required and 
may proceed to the investigation of the statistical 
ones in the next chapter. 

3. The Statistical Consequences 
of the Approximation 

The point of contact between dynamics and sta-
tistics is given by the famous relation 

< A « ) B ( 0 ) ) = ( B ( 0 ) A(t + iß)) (13) 

holding for the macro-canonical ensemble, from 
which we get 

( [ A , B ] ) = ( A ( 0 ) B ( 0 ) ) - ( A ( - i ß ) B ( 0 ) ) (14) 

by setting t= — iß. This equation will be the start-
ing point for our further considerations. 

If we define 

Fl = { [Sm , Sm + l ] } , 
( 1 5 ) 

Hi, A — ( [Sot &m + A , + ) 

and choose 1 = 0 , we can reduce these and the func-
tions / o (0 ) , # 0 (0 ) a n d a (0) by virtue of the 
peculiarities of the spin-l/2-algebra with the result 

Fo = 2 S , /o(0) = h +s, 

H0,A=2q(A) = {S*m8Uä),h0,AO) = |s + ? ( A ) , 

G 0 = 2 2 ^ ( A ) , <7o(0) = y 5 + 2 ^ ( A ) . A z A 

(16) 
In consequence of the point-symmetry of the lattice 
types considered, we may suggest that q( A) will not 
depend on A in fact n . Hence we may confine our 

11 It is poss ible to prove this con jec ture by a systematic dis-
cussion of the complete system of solutions (12 a) and 
(12 b ) . 



further attention to the behaviour of the function g0 

which is simpler than that one of hoy a • 
Setting 

= (17) 

in analogy to the definition of Ej and combining 
(14 ) , (16) and (12 a) we get after some re-arrange-
ment 

{r}1-r}2-rj2Ei + rj1E2 + z(Ei-E2)} s 

+ 2 z(El-E2) q = \ {vi - r]2 + n2Ex - r^ E2} 

\ { - q l + r]2 + El-E2 +rj1E1-rj2E2} s (18) 

+ iVi -V2 + V1E1- V2 E2] q =-h(E1 -E2). 

By these equations the magnetization s and the 
(z, z) -correlation q are fully determined. 

To improve the transparency of the evaluation 
of s and q from these equations, it is useful to intro-
duce some abbreviations: 

(19) 
JLl= s ( z - 1 ) , V=]/S

2(Z-1)2+Z 

S= s i n h ( ß j v ) , C = cosh{ß Jv) . 

Using them, after a somewhat tedious elimination 
we get the relations 
vA2(s + \) + As(2vC- (z + 1) 5) 

+ v(s- \) = 0 , ( 20a ) 

-r^-r- {2[v+ (u-z) AS +vAC] s 
1 4 z A s K r 

-[v-juAS-vAC]}, ( 2 0 b ) 

the first of which is an implicit non-linear equation 
for the determination of s(T'), whereas the second 
one allows the calculation of q, when s is known. 

Eq. (20 a) may be brought into a form, in which 
it is very similiar to that of the two-spin-cluster 
theory which is derived in Appendix 1. 

For both theories we find 
_ s inh (ß Heff)_ 

2 c o s h ( ß Hq{{) + r ' [ Z L ) 

but whereas the Oguchi type molecular field ap-
proach yields 

Hef{ = H' — 2 / 5 (z — 1 ) , r = 2 e~P], ( 22a ) 

we now get 
Hett = H'-Js(z- 1), 

2 + 1 o r = 2c-
= 2 cosh (ßJVs2(z-l)2 + z)~ z+l 

Vs'iz-iy+z 

For q a comparably simple expression does not 
seem to exist, but clearly this quantity is uniquely 
determined by (20 b ) . 

4. A Modification of the Approach 
of the Last Chapters 

Before discussing the quantitative contents and 
physical consequences of the formulae (20), (21) and 
(22) , we now go to present a slight modification 
of the derivation given so far, which is interesting 
by the fact that it sheds a striking light on the me-
chanism bringing about correlations-effects within 
the order of approximation considered. 

For this purpose let us go back to Eq. (7 ) , but 
forget the fact that in one of the z summands on the 
right hand of this equation A and A are identical. 
Performing the decoupling (8) now and introduc-
ing gi(t) as given by (9 ) , instead of (10 a) we get 
the equations 

-H 
0 

2] 
-H'+2Jsz (> ; ) (23) 

sinh (ß J Ys2 (z — 1) 2 -f z ) . (22 b) 

which describe the dynamical aspects of the system 
in this case. 

Integration of these differential equations and ap-
plication of exactly the same procedure as was per-
formed on the way from (10) to Eqs. (18) , yields 
the relations 

(«-*) = -£/(*+ I) - (E2' -El) ( I +qh), 
( q - i s ) = -E2(q+ is) (24) 

where E/ and E2 are defined by 

E t W w ' , (25) 

for the sake of simplicity. 
Evaluating these equations one finds from the 

second line of (24) 

q = 1 /l-E2' 
* 2 \1+e2', 

and introducing this and (25) into the first equa-
tion one finally gets 

5 = \ tanh [ \ ß( — H' + 2 J s z)] ,q = s2. (27) 

This is exactly the result of Weiss' (one-spin-cluster) 
molecular field theory, in which correlations between 
different particles are neglected from the beginning. 
It looks pretty surprising to recover these relations, 
especially q = s2, as the result of a procedure which 

(26) 



was supposed to yield a better description of the 
model, because the decoupling is performed in a 
way which takes correlating effects into account. But 
it clearly shows that within this order of approxima-
tion, i. e. if three-spin-correlations and secondary 
effects brought about by them are systematically 
neglected, the only mechanism for the realization of 
short-range order in the Ising-model is given by the 
identity 

, Sm -f- A S j; A , Sm+l) 
S/w , s , _ 1 — 4 l + i ) f o r A = A ( 2 8 ) 

which was taken into account in Chapters 2 and 3, 
but neglected in the derivations of the present chap-
ter. 

5. Evaluation and Discussion 
of the Thermodynamic Results 

Now we return to the theory developed in Chap-
ter 3. We evaluate and discuss the solutions result-
ing from Eqs. (20) — (22) , and compare the results 
with those following from the two-spin-cluster mole-
cular field approach. 

For H vanishing Eq. (21) has the trivial solution 
5 = 0 and, moreover, if s(T) is one solution, —5(7') 
is another one. These are rather elementary requisi-
tions which must be claimed to hold for every rea-
sonable theory on this subject12. 

The correlation in the unmagnetized phase which 
gives rise to short-range order above the transition 
point, follows from (21 b) to be 

9 = ^ t a n h ( £ / £ ) , (29 a) 
4 V z 

an expression which is in concurrence with 

< 7 = i t a n h ( ^ ) (29 b) 

for the two-spin-cluster theory and with q = 0 ac-
cording to Weiss. 

For T o o and all values of H the magnetiza-
tion and short-range order vanish in correspondence 
with the exact results. 

In the limit of ß —> oo i. e. 71—»-0 there exists a 
non-trivial solution 5 = — 1/2 and q = 1/4 which per-
sists for H = 0 and gives rise to the phase transition 

discussed below. For very low temperatures this so-
lution behaves like 

Jz (30 a) 

in contrast with the two-spin-cluster and the Weiss 
molecular field theories, both yielding asymptoti-
cally the exact result 

l z . (30 b) 5 = - - j+e~ 

This non-trivial solution breaks down at the Curie-
temperature Tq which in the usual manner may be 
derived by expanding Eq. (20 a) into a power series 
in 5. Setting 

ßJ{z-l)=K, _ ( 31a ) 
cosh (ß J Vz) = C0 , sinh (ß J j/z) = S0 , 

we get from (21) and (22 a) the first terms of this 
expansion 

S0 VzßJ-(z + l)C0ßJ 

s2 + 0(s4) = - 2-K + 2C0- yz S0 

( 3 1 b ) 

In the limit of 5 -^ -0 the expression on the right 
hand must vanish. Hence the relation 

2 - ( 2 - 1 ) ßcJ + 2 c o s h ( ß c J V z ) 

-^-Smh(ßcJVz)=0 

follows which determines the transition point 

Tc=l/kßc. 

The counterparts to this equation in the two-spin-
cluster and Weiss molecular field theories are given 
by the simpler relations 

1 - ( 2 - 1 ) ßcJ + e-frJ = 0 (33a) 
respectively 

ßcJ = 2/z. (33 b) 

In the neighbourhood of Tq the magnetization van-
ishes like 

5 = a J/Tc — T , (44) 

as it does also in the other theories mentioned. 
The transition points numerically evaluated from 

Eq. (32) for different lattice types are given in 

1 2 T h e r e is another asymptot i c relation which must b e ful -
filled b y every reasonable a p p r o x i m a t i o n : F o r z = oo the 
W M F b e c o m e s the exact descr ipt ion of the m o d e l 1 3 a n d 
there f o re the results of all approx imat ions must tend to 

it in the l imit of z —>- oo . T h e proo f f o r the approach of 
this paper is g iven in A p p e n d i x 2. 

13 F . BITTER, I n t r o d u c t i o n to F e r r o m a g n e t i s m , M c G r a w - H i l l , 
N e w Y o r k 1 9 3 7 , p. 153 . 



II 

1. di. 
2 

quadr . tr iangle 

4 6 

s. c . 

6 
b . c . c . f. c . c . 

8 12 

W M F 1 2 3 3 4 6 
2-sp.-cl . 0 . 782 1 .888 2 . 9 2 3 2 . 9 2 3 3 .941 5 . 9 6 0 
Eq . (32 ) 0 . 6 1 9 1 .645 2 . 6 5 3 2 . 6 5 3 3 . 6 5 6 5 . 6 6 0 
B P - M F 0 1 .442 2 . 4 6 6 2 . 4 6 6 3 . 4 7 6 5 . 4 8 4 

series 0 1 .134 1 .824 2 . 2 5 6 3 . 1 7 6 4 . 8 9 6 
exact 0 1 .134 1 .821 ? 9 ? 

T a b l e 1. T h e transit ion points f o r several Is ing latt ices 
in di f ferent approx imat ions . I : overa l l -approx imat ions , 
I I : spec ia l I s ing -mode l methods . 1. ch . : l inear c h a i n ; 
q u a d r . : quadrat i c p l a n e ; t r i a n g l e : h e x a g o n a l p l a n e ; 
s. c . : s imp le c u b i c ; b . c . c . : b o d y center c u b i c and 
f . c . c . : f a ce centered c u b i c lattice. W M F : W e i s s m o l e -
cu lar field t h e o r y ; 2 -sp . - c l . : two-spin-c luster a p p r o a c h ; 
E q . ( 3 2 ) : theory of this p a p e r ; B P - M F : BETHE-PEIERLS 
m o l e c u l a r field t h e o r y 1 4 ' 1 5 ; s e r i es : h igh temperature 
expans ions f o r the susceptibi l i ty 9 ; e x a c t : a c c o r d i n g to 

ONSAGER 16 and YANG 17 . 

Table 1 in comparison with the results of several 
other calculation methods. 

As is seen from this table the transition points 
derived from (32) compared with those evaluated 
from the two-spin-cluster theory tend considerably 
towards lower temperatures, i. e. into the right direc-
tion, but they are always higher than the results 
which B E T H E 14 and P E I E R L S 15 have derived from 
a (z + 1)-spin-cluster molecular field theory. In con-
trast to this approach our derivation incorrectly 
yields a phase transition for the linear chain, and, 
in agreement with it, it does not take into account 
the topological structure of the lattice: for the tri-
angle and the simple cubic lattice — both with 
z — 6 — we get the same Curie-point. As already 
suspected the largest discrepancies in comparison 
with the results of exact calculations and series ex-
pansions are found for the hexagonal plane and the 
face centered cubic lattices, where additional cor-
relation effects, coming from the fact that in these 
lattice types the nearest-neighbours of one site may 
be adjoining one another, are neglected in our ap-
proach. 

In Fig. 2 we compare the results of our approxi-
mation with those of the WMF, as evaluated for the 
s. c. lattice. The most important difference in com-
parison with this approach lies in the existence of 
short-range order for T>Tq , but the nearest-neigh-
bour-correlation q shows a break at the transition 
point instead of a singularity in scope, as it exactly 
should be 18. 

For low temperatures (T ^ 7 c / 2 ) s2 is a good 
approximaton for the correlation q. 

In Fig. 3 the same results are plotted in com-
parison with the curves evaluated from the two-spin-
cluster molecular field theory. Apart from the im-
provement in the transition point, mentioned above, 

Fig . 2. C o m p a r i s o n of the results of the present approach with 
W M F f o r the s.c . latt ice. : s and q f r o m Eqs . ( 2 0 ) , 

: s and q a fter W M F , : s2 a fter Eq . ( 2 0 ) , 
: corre lat ion in the u n m a g n e t i c phase [ E q . (29 a) ] . 

a : Cur ie po int a c c o r d i n g to ( 3 2 ) , b : Curie po int a c c o r d i n g 
to W M F . 

F ig . 3. C o m p a r i s o n of the results of the present approach with 
the two-spin-c luster mo lecu lar field theory f o r the s.c. latt ice . 

: s and q f r o m Eqs . ( 2 0 ) , : s and q f r o m 
Eqs . ( A 5 ) , : q in the unmagnet i c phase after (29 a ) , 

: the same quanti ty in the two-spin-c luster -approach. 
a : Cur ie po int a c c o r d i n g to ( 3 2 ) , b : Curie po int of the two-

spin-c luster theory . 

the most obvious difference of the two approaches 
is in the asymptotic behaviour of the correlation in 
the unmagnetic phase for low temperatures: q tends 

14 H . A . BETHE, P r o c . R o y . Soc . L o n d o n A 150 . 5 5 2 [ 1 9 3 5 ] . 
15 R . E . PEIERLS, P r o c . C a m b r i d g e Phi l . Soc . 3 2 , 4 7 1 [ 1 9 3 6 ] . 
16 L . ONSAGER. Phys . Rev . 6 5 , 1 1 7 [ 1 9 4 4 ] , 

17 C. N . YANG, Phys . R e v . 85, 8 0 9 [ 1 9 5 2 ] . 
18 T h i s break appears in all overa l l -approximat ions . 



towards 1/4 ]/z in our theory in contrast to the mo-
lecular field approach which yields q—> 1/4. But 
this behaviour is without further physical relevance, 
because this phase is unstable for thermodynamic 
reasons. 

Apart from these differences both theories yield 
very similiar results, especially as to the low tem-
perature behaviour of s and q and to the short-range 
order above the transition point. 

For the last point we shall account for the para-
magnetic susceptibility in this region. By implicit 
differentiation of Eq. (21) we get the formula 

_ ds 

dH s,h = o (34a) 

2— ß / ( z — 1 ) + 2 cosh (ß J Vz) - s inh (ß z ]/z) yz 

In it for T = Tq the denominator vanishes due to 
(32) , so that i in the correct way becomes singu-
lar at the transition point. For high temperatures 
(34 a) tends asymptotically to 

which is exactly the Curie-Weiss-law resulting from 
WMF. For temperatures above, but near to Tq , 
deviations from this simple law appear in (34 a) 
which are a direct consequence of the onset of short-
range order in this temperature interval. 

6. Conclusions 

As we have seen from the preceding discussion 
the natural reference point for a comparison of the 
theory presented in this paper is given by the Ogu-
chi type two-spin-cluster molecular field approxima-
tion for the Ising-model. There is a good agreement 
of the results of both approaches for low and high 
temperatures, but in the critical region our theory 
seems to present a real improvement because of the 
more accurate values for the transition point, it 
yields. 

On the other hand not only by inspection of the 
results, but also from theoretical considerations our 
theory and that of Oguchi are closely related. This 
is due to the fact that in both approaches two-par-
ticle-correlations are the only ones involved, and all 
higher correlations are systematically neglected. In 
contrast to this e. g. in the Bethe-Peierls theory such 
higher correlations are taken into account. 

19 J. S. SMART, Ef fect ive F ie ld T h e o r i e s of M a g n e t i s m , W . B . 
Saunders C o m p a n y , P h i l a d e l p h i a 1966 . 

The difference of the two approaches compared, 
and with it the key for an understanding of the 
different quality of their results, lies in the fact, 
that in Oguchi's theory only the correlation within 
one fixed two-spin-cluster is considered, whereas in 
our approximation all pairs of nearest-neighbours 
contribute to the correlation in a highly symmetrical 
way. The decoupling needed for a separation of the 
two- from the more-particle-correlations in this case 
is provided by a very plausible generalization of the 
successful procedure invented by Tjablikov. 

A very important question is that one concerning 
the possibility of a generalization of the method 
adopted in this paper to the Heisenberg-model. On 
one hand, as we have already emphasized, Tjabli-
kov's collective approach is essentially a single par-
ticle theory which by this fact cannot give adequate 
consideration to correlation effects. On the othei 
hand the O G U C H I 3 and P. R. W E I S S 4 molecular field 
approximations for the Heisenberg-model take into 
account cluster-correlations, but are local theories 
from the beginning which pretend an energy gap in 
the spectrum of the elementary excitations and there-
fore yield wrong results for the mathematical type 
of the temperature dependence of the magnetization 
at very low temperatures. Clearly it would be highly 
desirable to incorporate both correlations and the 
collective behaviour of the model in one approxima-
tion which should be expected to give the best over-
all-description of the Heisenberg-model available so 
far. 

Indeed, as preliminary calculations have shown, 
it is possible by the method of correlation functions 
to bring together both features of the model in one 
system of differential equations, at least in a certain 
generalization of Oguchi's two-spin-cluster theory. 
But unfortunately in the evaluation of this system 
great mathematical difficulties arise which are nei-
ther completely understood in their origin nor over-
come at present. 
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Appendix 

1. Concise Derivation of the Two-Spin-Cluster 
Molecular Field Theory for the Ising-Model 

The derivation given in this appendix is completely 
based on the concepts of the molecular field approxi-
mation, as presented e. g. by S M A R T 1 9 . 



Let us investigate the statistical behaviour of an 
Ising-coupled cluster, consisting of two spins 0 and 1 
under the influence of an effective magnetic field Hea 
which is given by 

Hetf = H' — 2 / (z — 1) s . ( A l ) 

The Hamiltonian of this cluster is 

H= - 2 / V « l 2 + ^ e f f ( V + V ) (A 2) 

and the statistical quantities in question are defined by 
the following relations 

5 = 0 / > = < V > = - ^ 
2 3(/?ffeff) 

(log Trace e~ßH), 

(A 3a) 

The trace 

3 ( 2 J ß ) 
(log Trace e~ßH). (A 3b) 

Trace e~ßH = 2 e " ^ « ( A 4 ) 

is easily evaluated, because H has only the 4 eigen-
values 

£ x = - / / 2 - t f e f f , £2.3 = / / 2 , E4=-J/2 + Heii. 

Introducing them into (A 4) and performing the differ-
entiations ( A 3 ) , one immediately gets the final ex-
pressions 

1 sinh (ß HQff) 
5 = = ~~ T cosh (ß HEFT) +e~ßJ ' 

1 cosh (ß Heff) —e~ßJ 

(A 5a) 

q = 4 cosh (ß Heff) -\-e~ßl (A 5b) 

which together with the definition of Heu (A 1) form 
a complete non-linear system for the evaluation of the 
magnetization 5 and the correlation q. 

2. The Asymptotic Behaviour of the Theory 
in the Limit z-^-^c 

As B ITTER 13 has noted, the WMF becomes the exact 
theory of the Hamiltonian (1) in the limit of z—> . 
This statement yields and additional boundary condition 
which must be met by every reasonable approximation 
for the Ising-model and which now is proved to be ful-
filled by the approach of this paper at least in the limit 
of vanishing magnetic field. 

If we go bade to Eqs. (19) and (22) we find the 
asymptotical expressions 

v ^ s z , Heft ~ - / z i ( A 6) 

which, introduced into (21) and (22b) yield the result 
sinh (ß J z s) 

S = 2 c o sh (ß J z s) + [2 c o s h l ß~J~zs) - ( 1 / s • sinh (ß J z s) ] ' 

(A 7a) 
This relation may be easily transformed into 

4 cosh (ß J z s) • s — sinh (ß J z s) =sinh (ß J z s) (A 7b) 
which is exactly the WMF equation 

5 = J tanh (ß J z s). (A 7c) 
For the correlation q we find from Eq. (20b) 

_Q 1 
s 4 A s 

1 
4 A s 

{2s + 2sAC + 2sAS—l+AC —AS} 

{ 4 s — l + A2} , < A 8 a > 

and introducing (A 7c) into this equation we get 

q-= h • tanh(ß J zs) =s, (A 8b) 
s 

the result of Weiss' one-spin-cluster approach. 
Therefore for H = 0 our approximation meets the 

boundary condition in the same way, as Oguchi's, 
Bethe-Peierls-Weiss' or Bogoljubov-Tjablikov's theories 
do. 


